Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377349

RESUMO

Viruses represent a major threat to all animals, which defend themselves through induction of a large set of virus-stimulated genes that collectively control the infection. In vertebrates, these genes include interferons that play a critical role in the amplification of the response to infection. Virus- and interferon-stimulated genes include restriction factors targeting the different steps of the viral replication cycle, in addition to molecules associated with inflammation and adaptive immunity. Predictably, antiviral genes evolve dynamically in response to viral pressure. As a result, each animal has a unique arsenal of antiviral genes. Here, we exploit the capacity to experimentally activate the evolutionarily conserved stimulator of IFN genes (STING) signaling pathway by injection of the cyclic dinucleotide 2'3'-cyclic guanosine monophosphate-adenosine monophosphate into flies to define the repertoire of STING-regulated genes in 10 Drosophila species, spanning 40 million years of evolution. Our data reveal a set of conserved STING-regulated factors, including STING itself, a cGAS-like-receptor, the restriction factor pastel, and the antiviral protein Vago, but also 2 key components of the antiviral RNA interference pathway, Dicer-2, and Argonaute2. In addition, we identify unknown species- or lineage-specific genes that have not been previously associated with resistance to viruses. Our data provide insight into the core antiviral response in Drosophila flies and pave the way for the characterization of previously unknown antiviral effectors.


Assuntos
Drosophila , Imunidade Inata , Animais , Nucleotídeos Cíclicos , Antivirais/farmacologia
3.
Mol Ecol Resour ; 24(2): e13905, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37996991

RESUMO

The Asian honeybee, Apis cerana, is an ecologically and economically important pollinator. Mapping its genetic variation is key to understanding population-level health, histories and potential capacities to respond to environmental changes. However, most efforts to date were focused on single nucleotide polymorphisms (SNPs) based on a single reference genome, thereby ignoring larger scale genomic variation. We employed long-read sequencing technologies to generate a chromosome-scale reference genome for the ancestral group of A. cerana. Integrating this with 525 resequencing data sets, we constructed the first pan-genome of A. cerana, encompassing almost the entire gene content. We found that 31.32% of genes in the pan-genome were variably present across populations, providing a broad gene pool for environmental adaptation. We identified and characterized structural variations (SVs) and found that they were not closely linked with SNP distributions; however, the formation of SVs was closely associated with transposable elements. Furthermore, phylogenetic analysis using SVs revealed a novel A. cerana ecological group not recoverable from the SNP data. Performing environmental association analysis identified a total of 44 SVs likely to be associated with environmental adaptation. Verification and analysis of one of these, a 330 bp deletion in the Atpalpha gene, indicated that this SV may promote the cold adaptation of A. cerana by altering gene expression. Taken together, our study demonstrates the feasibility and utility of applying pan-genome approaches to map and explore genetic feature variations of honeybee populations, and in particular to examine the role of SVs in the evolution and environmental adaptation of A. cerana.


Assuntos
Genoma de Inseto , Polimorfismo de Nucleotídeo Único , Abelhas/genética , Animais , Filogenia , Análise de Sequência de DNA
4.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425881

RESUMO

Improvements in genome sequencing and assembly are enabling high-quality reference genomes for all species. However, the assembly process is still laborious, computationally and technically demanding, lacks standards for reproducibility, and is not readily scalable. Here we present the latest Vertebrate Genomes Project assembly pipeline and demonstrate that it delivers high-quality reference genomes at scale across a set of vertebrate species arising over the last ~500 million years. The pipeline is versatile and combines PacBio HiFi long-reads and Hi-C-based haplotype phasing in a new graph-based paradigm. Standardized quality control is performed automatically to troubleshoot assembly issues and assess biological complexities. We make the pipeline freely accessible through Galaxy, accommodating researchers even without local computational resources and enhanced reproducibility by democratizing the training and assembly process. We demonstrate the flexibility and reliability of the pipeline by assembling reference genomes for 51 vertebrate species from major taxonomic groups (fish, amphibians, reptiles, birds, and mammals).

6.
PLoS Pathog ; 19(3): e1011257, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972320

RESUMO

Mycobacterium abscessus is the most pathogenic species among the predominantly saprophytic fast-growing mycobacteria. This opportunistic human pathogen causes severe infections that are difficult to eradicate. Its ability to survive within the host was described mainly with the rough (R) form of M. abscessus, which is lethal in several animal models. This R form is not present at the very beginning of the disease but appears during the progression and the exacerbation of the mycobacterial infection, by transition from a smooth (S) form. However, we do not know how the S form of M. abscessus colonizes and infects the host to then multiply and cause the disease. In this work, we were able to show the hypersensitivity of fruit flies, Drosophila melanogaster, to intrathoracic infections by the S and R forms of M. abscessus. This allowed us to unravel how the S form resists the innate immune response developed by the fly, both the antimicrobial peptides- and cellular-dependent immune responses. We demonstrate that intracellular M. abscessus was not killed within the infected phagocytic cells, by resisting lysis and caspase-dependent apoptotic cell death of Drosophila infected phagocytes. In mice, in a similar manner, intra-macrophage M. abscessus was not killed when M. abscessus-infected macrophages were lysed by autologous natural killer cells. These results demonstrate the propensity of the S form of M. abscessus to resist the host's innate responses to colonize and multiply within the host.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Infecções por Mycobacterium , Mycobacterium abscessus , Mycobacterium , Animais , Humanos , Camundongos , Drosophila melanogaster , Fagócitos/patologia , Infecções por Mycobacterium/microbiologia , Drosophila , Infecções por Mycobacterium não Tuberculosas/microbiologia
7.
Trends Genet ; 39(7): 545-559, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36801111

RESUMO

The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Genômica , Genoma
8.
F1000Res ; 12: 936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38434623

RESUMO

Background: Comparative genomic analyses to delineate gene evolutionary histories inform the understanding of organismal biology by characterising gene and gene family origins, trajectories, and dynamics, as well as enabling the tracing of speciation, duplication, and loss events, and facilitating the transfer of gene functional information across species. Genomic data are available for an increasing number of species from the genus Drosophila, however, a dedicated resource exploiting these data to provide the research community with browsable results from genus-wide orthology delineation has been lacking. Methods: Using the OMA Orthologous Matrix orthology inference approach and browser deployment framework, we catalogued orthologues across a selected set of Drosophila species with high-quality annotated genomes. We developed and deployed a dedicated instance of the OMA browser to facilitate intuitive exploration, visualisation, and downloading of the genus-wide orthology delineation results. Results: DrosOMA - the Drosophila Orthologous Matrix browser, accessible from https://drosoma.dcsr.unil.ch/ - presents the results of orthology delineation for 36 drosophilids from across the genus and four outgroup dipterans. It enables querying and browsing of the orthology data through a feature-rich web interface, with gene-view, orthologous group-view, and genome-view pages, including comprehensive gene name and identifier cross-references together with available functional annotations and protein domain architectures, as well as tools to visualise local and global synteny conservation. Conclusions: The DrosOMA browser demonstrates the deployability of the OMA browser framework for building user-friendly orthology databases with dense sampling of a selected taxonomic group. It provides the Drosophila research community with a tailored resource of browsable results from genus-wide orthology delineation.


Assuntos
Drosophila , Evolução Molecular , Animais , Drosophila/genética , Hibridização Genômica Comparativa , Bases de Dados Factuais , Genômica
9.
Proc Natl Acad Sci U S A ; 119(24): e2114309119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35675424

RESUMO

Viruses transmitted by Aedes mosquitoes are an increasingly important global cause of disease. Defining common determinants of host susceptibility to this large group of heterogenous pathogens is key for informing the rational design of panviral medicines. Infection of the vertebrate host with these viruses is enhanced by mosquito saliva, a complex mixture of salivary-gland-derived factors and microbiota. We show that the enhancement of infection by saliva was dependent on vascular function and was independent of most antisaliva immune responses, including salivary microbiota. Instead, the Aedes gene product sialokinin mediated the enhancement of virus infection through a rapid reduction in endothelial barrier integrity. Sialokinin is unique within the insect world as having a vertebrate-like tachykinin sequence and is absent from Anopheles mosquitoes, which are incompetent for most arthropod-borne viruses, whose saliva was not proviral and did not induce similar vascular permeability. Therapeutic strategies targeting sialokinin have the potential to limit disease severity following infection with Aedes-mosquito-borne viruses.


Assuntos
Aedes , Infecções por Arbovirus , Arbovírus , Saliva , Taquicininas , Viroses , Aedes/genética , Aedes/virologia , Animais , Infecções por Arbovirus/transmissão , Arbovírus/genética , Arbovírus/metabolismo , Saliva/virologia , Taquicininas/genética , Taquicininas/metabolismo , Viroses/transmissão
10.
PLoS Comput Biol ; 18(5): e1010075, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35560159

RESUMO

Characterising gene function for the ever-increasing number and diversity of species with annotated genomes relies almost entirely on computational prediction methods. These software are also numerous and diverse, each with different strengths and weaknesses as revealed through community benchmarking efforts. Meta-predictors that assess consensus and conflict from individual algorithms should deliver enhanced functional annotations. To exploit the benefits of meta-approaches, we developed CrowdGO, an open-source consensus-based Gene Ontology (GO) term meta-predictor that employs machine learning models with GO term semantic similarities and information contents. By re-evaluating each gene-term annotation, a consensus dataset is produced with high-scoring confident annotations and low-scoring rejected annotations. Applying CrowdGO to results from a deep learning-based, a sequence similarity-based, and two protein domain-based methods, delivers consensus annotations with improved precision and recall. Furthermore, using standard evaluation measures CrowdGO performance matches that of the community's best performing individual methods. CrowdGO therefore offers a model-informed approach to leverage strengths of individual predictors and produce comprehensive and accurate gene functional annotations.


Assuntos
Biologia Computacional , Semântica , Biologia Computacional/métodos , Consenso , Ontologia Genética , Aprendizado de Máquina , Anotação de Sequência Molecular
11.
Nat Commun ; 13(1): 1960, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413948

RESUMO

Chromosomes are hierarchically folded within cell nuclei into territories, domains and subdomains, but the functional importance and evolutionary dynamics of these hierarchies are poorly defined. Here, we comprehensively profile genome organizations of five Anopheles mosquito species and show how different levels of chromatin architecture influence each other. Patterns observed on Hi-C maps are associated with known cytological structures, epigenetic profiles, and gene expression levels. Evolutionary analysis reveals conservation of chromatin architecture within synteny blocks for tens of millions of years and enrichment of synteny breakpoints in regions with increased genomic insulation. However, in-depth analysis shows a confounding effect of gene density on both insulation and distribution of synteny breakpoints, suggesting limited causal relationship between breakpoints and regions with increased genomic insulation. At the level of individual loci, we identify specific, extremely long-ranged looping interactions, conserved for ~100 million years. We demonstrate that the mechanisms underlying these looping contacts differ from previously described Polycomb-dependent interactions and clustering of active chromatin.


Assuntos
Anopheles , Animais , Anopheles/genética , Cromatina/genética
12.
Proc Biol Sci ; 289(1970): 20220042, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35259992

RESUMO

Adaptive radiation is an important mechanism of organismal diversification and can be triggered by new ecological opportunities. Although poorly studied in this regard, parasites are an ideal group in which to study adaptive radiations because of their close associations with host species. Both experimental and comparative studies suggest that the ectoparasitic wing lice of pigeons and doves have adaptively radiated, leading to differences in body size and overall coloration. Here, we show that long-distance dispersal by dove hosts was central to parasite diversification because it provided new ecological opportunities for parasites to speciate after host-switching. We further show that among extant parasite lineages host-switching decreased over time, with cospeciation becoming the more dominant mode of parasite speciation. Taken together, our results suggest that host dispersal, followed by host-switching, provided novel ecological opportunities that facilitated adaptive radiation by parasites.


Assuntos
Parasitos , Ftirápteros , Animais , Columbidae , Interações Hospedeiro-Parasita , Filogenia
13.
Curr Opin Insect Sci ; 51: 100902, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35301165

RESUMO

Improvements in reference genome generation for insects and across the tree of life are extending the concept and utility of model organisms beyond traditional laboratory-tractable supermodels. Species or groups of species with comprehensive genome resources can be developed into model systems for studying a large variety of biological phenomena. Advances in sequencing and assembly technologies are supporting these emerging genome-enabled model systems by producing resources that are increasingly accurate and complete. Nevertheless, quality controls including assessing gene content completeness are required to ensure that these data can be included in expanding catalogues of high-quality references that will greatly advance understanding of insect biology and evolution.


Assuntos
Genoma , Genômica , Animais , Insetos/genética
14.
Gigascience ; 112022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217859

RESUMO

BACKGROUND: Ambitious initiatives to coordinate genome sequencing of Earth's biodiversity mean that the accumulation of genomic data is growing rapidly. In addition to cataloguing biodiversity, these data provide the basis for understanding biological function and evolution. Accurate and complete genome assemblies offer a comprehensive and reliable foundation upon which to advance our understanding of organismal biology at genetic, species, and ecosystem levels. However, ever-changing sequencing technologies and analysis methods mean that available data are often heterogeneous in quality. To guide forthcoming genome generation efforts and promote efficient prioritization of resources, it is thus essential to define and monitor taxonomic coverage and quality of the data. FINDINGS: Here we present an automated analysis workflow that surveys genome assemblies from the United States NCBI, assesses their completeness using the relevant BUSCO datasets, and collates the results into an interactively browsable resource. We apply our workflow to produce a community resource of available assemblies from the phylum Arthropoda, the Arthropoda Assembly Assessment Catalogue. Using this resource, we survey current taxonomic coverage and assembly quality at the NCBI, examine how key assembly metrics relate to gene content completeness, and compare results from using different BUSCO lineage datasets. CONCLUSIONS: These results demonstrate how the workflow can be used to build a community resource that enables large-scale assessments to survey species coverage and data quality of available genome assemblies, and to guide prioritizations for ongoing and future sampling, sequencing, and genome generation initiatives.


Assuntos
Ecossistema , Genoma , Sequência de Bases , Mapeamento Cromossômico , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
15.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983844

RESUMO

Animals have repeatedly evolved specialized organs and anatomical structures to produce and deliver a mixture of potent bioactive molecules to subdue prey or predators-venom. This makes it one of the most widespread, convergent functions in the animal kingdom. Whether animals have adopted the same genetic toolkit to evolved venom systems is a fascinating question that still eludes us. Here, we performed a comparative analysis of venom gland transcriptomes from 20 venomous species spanning the main Metazoan lineages to test whether different animals have independently adopted similar molecular mechanisms to perform the same function. We found a strong convergence in gene expression profiles, with venom glands being more similar to each other than to any other tissue from the same species, and their differences closely mirroring the species phylogeny. Although venom glands secrete some of the fastest evolving molecules (toxins), their gene expression does not evolve faster than evolutionarily older tissues. We found 15 venom gland-specific gene modules enriched in endoplasmic reticulum stress and unfolded protein response pathways, indicating that animals have independently adopted stress response mechanisms to cope with mass production of toxins. This, in turn, activates regulatory networks for epithelial development, cell turnover, and maintenance, which seem composed of both convergent and lineage-specific factors, possibly reflecting the different developmental origins of venom glands. This study represents a first step toward an understanding of the molecular mechanisms underlying the repeated evolution of one of the most successful adaptive traits in the animal kingdom.


Assuntos
Evolução Molecular , Filogenia , Transcriptoma , Peçonhas , Estruturas Animais/metabolismo , Animais , Peçonhas/biossíntese , Peçonhas/genética
16.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34893861

RESUMO

Roles of constraints in shaping evolutionary outcomes are often considered in the contexts of developmental biology and population genetics, in terms of capacities to generate new variants and how selection limits or promotes consequent phenotypic changes. Comparative genomics also recognizes the role of constraints, in terms of shaping evolution of gene and genome architectures, sequence evolutionary rates, and gene gains or losses, as well as on molecular phenotypes. Characterizing patterns of genomic change where putative functions and interactions of system components are relatively well described offers opportunities to explore whether genes with similar roles exhibit similar evolutionary trajectories. Using insect immunity as our test case system, we hypothesize that characterizing gene evolutionary histories can define distinct dynamics associated with different functional roles. We develop metrics that quantify gene evolutionary histories, employ these to characterize evolutionary features of immune gene repertoires, and explore relationships between gene family evolutionary profiles and their roles in immunity to understand how different constraints may relate to distinct dynamics. We identified three main axes of evolutionary trajectories characterized by gene duplication and synteny, maintenance/stability and sequence conservation, and loss and sequence divergence, highlighting similar and contrasting patterns across these axes amongst subsets of immune genes. Our results suggest that where and how genes participate in immune responses limit the range of possible evolutionary scenarios they exhibit. The test case study system of insect immunity highlights the potential of applying comparative genomics approaches to characterize how functional constraints on different components of biological systems govern their evolutionary trajectories.


Assuntos
Evolução Molecular , Insetos , Animais , Genoma , Genômica , Sistema Imunitário , Insetos/genética
17.
Mol Ecol Resour ; 22(1): 28-44, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34053186

RESUMO

Anopheles is a diverse genus of mosquitoes comprising over 500 described species, including all known human malaria vectors. While a limited number of key vector species have been studied in detail, the goal of malaria elimination calls for surveillance of all potential vector species. Here, we develop a multilocus amplicon sequencing approach that targets 62 highly variable loci in the Anopheles genome and two conserved loci in the Plasmodium mitochondrion, simultaneously revealing both the mosquito species and whether that mosquito carries malaria parasites. We also develop a cheap, nondestructive, and high-throughput DNA extraction workflow that provides template DNA from single mosquitoes for the multiplex PCR, which means specimens producing unexpected results can be returned to for morphological examination. Over 1000 individual mosquitoes can be sequenced in a single MiSeq run, and we demonstrate the panel's power to assign species identity using sequencing data for 40 species from Africa, Southeast Asia, and South America. We also show that the approach can be used to resolve geographic population structure within An. gambiae and An. coluzzii populations, as the population structure determined based on these 62 loci from over 1000 mosquitoes closely mirrors that revealed through whole genome sequencing. The end-to-end approach is quick, inexpensive, robust, and accurate, which makes it a promising technique for very large-scale mosquito genetic surveillance and vector control.


Assuntos
Anopheles , Plasmodium , África , Animais , Anopheles/genética , Humanos , Mosquitos Vetores/genética , Plasmodium/genética
19.
PLoS Pathog ; 17(5): e1009486, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015060

RESUMO

Vitellogenesis and oocyte maturation require anautogenous female Anopheles mosquitoes to obtain a bloodmeal from a vertebrate host. The bloodmeal is rich in proteins that are readily broken down into amino acids in the midgut lumen and absorbed by the midgut epithelial cells where they are converted into lipids and then transported to other tissues including ovaries. The stearoyl-CoA desaturase (SCD) plays a pivotal role in this process by converting saturated (SFAs) to unsaturated (UFAs) fatty acids; the latter being essential for maintaining cell membrane fluidity amongst other housekeeping functions. Here, we report the functional and phenotypic characterization of SCD1 in the malaria vector mosquito Anopheles coluzzii. We show that RNA interference (RNAi) silencing of SCD1 and administration of sterculic acid (SA), a small molecule inhibitor of SCD1, significantly impact on the survival and reproduction of female mosquitoes following blood feeding. Microscopic observations reveal that the mosquito thorax is quickly filled with blood, a phenomenon likely caused by the collapse of midgut epithelial cell membranes, and that epithelial cells are depleted of lipid droplets and oocytes fail to mature. Transcriptional profiling shows that genes involved in protein, lipid and carbohydrate metabolism and immunity-related genes are the most affected by SCD1 knock down (KD) in blood-fed mosquitoes. Metabolic profiling reveals that these mosquitoes exhibit increased amounts of saturated fatty acids and TCA cycle intermediates, highlighting the biochemical framework by which the SCD1 KD phenotype manifests as a result of a detrimental metabolic syndrome. Accumulation of SFAs is also the likely cause of the potent immune response observed in the absence of infection, which resembles an auto-inflammatory condition. These data provide insights into mosquito bloodmeal metabolism and lipid homeostasis and could inform efforts to develop novel interventions against mosquito-borne diseases.


Assuntos
Ração Animal/análise , Anopheles/crescimento & desenvolvimento , Comportamento Alimentar , Mosquitos Vetores/fisiologia , Reprodução , Estearoil-CoA Dessaturase/metabolismo , Animais , Anopheles/enzimologia , Anopheles/imunologia , Feminino , Perfilação da Expressão Gênica , Mosquitos Vetores/parasitologia , Estearoil-CoA Dessaturase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...